

Reaction of vinylcarbenoids with thioketones: formation of vinylthiocarbonyl ylides followed by ring closure to thiiranes and dihydrothiophenes

Masashi Hamaguchi,* Nao Funakoshi and Takumi Oshima

Department of Materials Chemistry, Graduate School of Engineering, Osaka University, Toyonaka, Osaka, 560 Japan

Received 19 July 1999; revised 30 August 1999; accepted 3 September 1999

Abstract

Reactions were carried out on thioketones with vinylcarbenoids. Rh₂(OAc)₄-catalyzed reaction of vinyldiazo compounds 1a,b with xanthione 2 and thiochromone 3 gave thiiranes 4b and olefins 5 and 6, desulfurization products from thiiranes, while the reaction of 1c with 2 and 3 afforded dihydrothiophenes 7, 8 and 9. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: carbenes; carbenoids; thiocarbonyl compounds; cyclization; ylides.

Reaction of diazoalkanes with thioketones giving unstable 1,3,4-thiadiaozolines followed by extrusion of nitrogen has been widely studied by Schönberg et al. as a traditional method of generation of thiocarbonyl ylides. $^{1-4}$ The reaction of metallocarbenoids, generated from diazo compounds with thiocarbonyl compounds such as thioamides and thionesters, has recently attracted much interest from a synthetic viewpoint (Scheme 1). From a synthetic and mechanistic viewpiont the chemistry of vinylcarbenoids has received significant attention over the past ten years. Davies et al. have found that the vinylic β -carbon of vinylcarbenoids is involved in the reaction with dienes, giving [3+4] cycloadducts via formation of cis-divinylcyclopropanes followed by Cope rearrangement. We have also expected the participation of the vinylic β -carbon of vinylcarbenoids in the reaction with heteroatom compounds.

Scheme 1.

^{*} Corresponding author. Fax: +81-6-6850-5785; e-mail: hamaro@ch.wani.osaka-u.ac.jp

In the present communication, we report the first example of generation of novel vinylthiocarbonyl ylides by the reaction of vinylcarbenoids with thioketones. Metallovinylcarbenoids generated from Rh₂(OAc)₄-catalyzed decomposition of vinyldiazo compounds attack a lone pair of sulfur of thioketones to give vinylthiocarbonyl ylides, which could undergo 1,3- and 1,5-electrocyclization to thiiranes and dihydrothiophenes, respectively. We used vinyldiazo compounds 1a-c as precursors of carbenoids, and xanthione 2 and thiochromone 3 as thiocarbonyl compounds.

2-(p-Chlorophenyl)-4-diazo-cis-2-butenenitrile (1a) in dichloromethane was added over 6 hours to a solution of an equimolar amount of xanthione 2 and a catalytic amount of Rh₂(OAc)₄ at room temperature and the reaction mixture was separated by chromatography over silica gel to give the diene 5a in the yield of 82% (Scheme 2). The thiirane 4b was isolated in the yield of 74% in the reaction of 2-(p-chlorophenyl)-4-diazo-cis-2-petenenitrile (1b) with 2 in the presence of Rh₂(OAc)₄. Treatment of 4b with triphenylphosphine in refluxing THF gave the diene 5b. The reaction of 1a with thiochromone 3 afforded the diene 6a-E in the yield 95%, while 1b reacted with 3 to yield two isomeric dienes 6b-E and 6b-Z in the yields of 18 and 55%, respectively. Stereochemistry of the dienes 6a-E, 6b-E and 6b-Z was determined by NOE experiments. Thus, both 1a and 1b gave dienes or a thiirane in the reaction with xanthione 2 and thiochromone 3.

However, phenylvinyldiazomethane derivative 1c reacted with 2 to give only dihydrothiophene 7c (66%) (Scheme 3). Two isomeric spirocyclic dihydrothiophene 8c and 9c were obtained in a ratio of 2:1 in the reaction with 3. The structures of 8c and 9c were assigned on the basis of the appearance of an Ha proton (δ 4.65) of 8c at 1.20 ppm higher field due to the shielding effect of chlorophenyl group syn to Ha comparing with that of 9c (δ 5.85). 10

Scheme 3.

Vinylcarbenoids attack either of the lone pairs of sulfur of the thioketones to give vinylthio-carbonyl ylides. In the reaction of 1a with 2, only sterically favorable vinylthiocarbonyl ylide 10-exo (R=R'), in which a cyanostyryl group is located at exo-position, could be formed and cyclized in a conrotatory fashion to the thiirane 4a followed by extrusion of sulfur, yielding the diene 5a. The reaction of 1a with 3 would produce two isomeric vinylthiocarbonyl ylides 10-exo-1 and 10-exo-2, which would undergo cyclization to isomeric thiiranes and subsequent desulfurization would give 6b-E and 6b-Z. The vinylcarbenoid from 1c attacks either of sulfur lone pairs of 3 to give two isomeric vinylthiocarbonyl ylides 10-endo-1 and 10-endo-2, in which a larger phenyl group is located at the exo-position and a smaller cyanostyryl group at the endo-position. The ylides 10-endo-1 and 10-endo-2 could undergo 6-electrons cyclization to dihydrothiophene derivatives 8c and 9c.

In conclusion, novel vinylthiocarbonyl ylides, generated from the reaction of vinylcarbenoids with thioketones, undergo 1,3-electrocyclization to a thiirane or 1,5-electrocyclization to a dihydrothiophene depending on the properties of substituents of the ylides.

References

- 1. Schönberg, A.; König, B.; Singer, E. Chem. Ber. 1967, 100, 767.
- (a) Huisgen, R.; Langhals, E. Tetrahedron Lett. 1989, 30, 5369.
 (b) Huisgen, R.; Xingya, L. Tetrahedron Lett. 1983, 24, 4185.
 (c) Huisgen, R.; Xingya, L. Heterocycle 1983, 20, 2363.
 (d) Kalwinsch, I.; Xingya, L.; Gottstein, J.; Huisgen, R. J. Am. Chem. Soc. 1981, 103, 7032.
- 3. Mataka, S.; Ishi-i, S.; Tashiro, M. J. Org. Chem. 1978, 43, 3730.
- (a) Kägi, M.; Linden, A.; Mloston, G.; Heimgartner, H. Helv. Chim. Acta. 1998, 81, 285. (b) Mloston, G.; Heimgartner, H. Helv. Chim. Acta. 1996, 79, 1785. (c) Kägi, M.; Linden, A.; Mloston, G.; Heimgartner, H. Helv. Chim. Acta. 1996, 79, 855. (d) Mloston, G.; Petit, M.; Linden, A.; Heimgartner, H. Helv. Chim. Acta. 1994, 77, 435.
- (a) Takano, S.; Tomita, S.; Takahashi, M.; Ogasawara, K. Synthesis 1987, 1116.
 (b) Fang, F. G.; Prato, M.; Kim, G.; Danishefsky, S. J. Tetrahedron Lett. 1989, 30, 3625.
 (c) Fang, F. G.; Danishefsky, S. J. Tetrahedron Lett. 1989, 30, 2747.
 (d) Fang, F. G.; Maier, M. E.; Danishefsky, S. J. J. Org. Chem. 1990, 55, 831.
 (e) Kim, G.; Chu-Moyer, M. Y.; Danishefsky, S. J.; Shulte, G. K. J. Am. Chem. Soc. 1990, 112, 2003.
 (f) Kim, G.; Chu-Moyer, M. Y.; Danishefsky, S. J.; Shulte, G. K. J. Am. Chem. Soc. 1993, 115, 30.
 (g) Mlostón, G.; Heimgartner, H. Helv. Chim. Acta. 1996, 79, 1785.
- (a) Gu, H. H.; McDaniel, K. F.; McMills, M. C.; Yap, G. P.; Rheingold, A. L. Tetrahedron Lett. 1997, 38, 6993.
 (b) Davies, H. M. L.; Bruzinski, P. R.; Lake, D. H.; Kong, N.; Fall, M. J. J. Am. Chem. Soc. 1996, 118, 6897.
 (c) Davies, H. M. L.; Doan, B. D. Tetrahedron Lett. 1996, 37, 3967.
 (d) Davies, H. M. L.; Hansen, T.; Rutberg, J.; Bruzinski, P. R. Tetrahedron Lett. 1997, 38, 1741.
 (e) Yoshikoshi, K.; Achiwa, K. Chem. Pharm. Bull. 1995, 43, 2048.
- 7. (a) Davies, H. M. L. Tetrahedron 1993, 49, 5203. (b) Davies, H. M. L.; Doan, B. D. J. Org. Chem. 1998, 63, 657. (c) Davies, H. M. L.; Clark, T. J. Tetrahedron 1994, 50, 9883.
- 8. Hamaguchi, M.; Misumi, T.; Oshima, T. Tetrahedron Lett. 1998, 39, 7113.
- 9. As the *trans* structure of α-cyanostyryl group was confirmed by NOE experiments, the suffixes E, Z are used to denote the stereochemistry of another double bond of the dienes.
- 10. 1 H NMR (CDCl₃) data for **8c**: δ 4.65 (1H, J=6.3 Hz), 5.99 (s, 1H), 6.36 (d, 1H, J=6.3 Hz), 6.97 (dd, 1H, J=8.2, 1.4 Hz), 7.18–7.24 (m, 1H), 7.25–7.39 (m, 5H), 7.44–7.48 (m, 2H), 8.28 (dd, 1H, J=7.9, 1.6 Hz). 1 H NMR (CDCl₃) data for **9c**: δ 5.85 (d, 1H, J=6.3 Hz), 5.96 (s, 1H), 6.68 (dd, 1H, J=8.5, 1.4 Hz), 6.80–6.86 (m, 1H), 6.89 (d, 1H, J=6.3), 7.05–7.14 (m, 5H), 7.30 (dd, 1H, J=7.9, 1.3 Hz), 7.45–7.48 (m, 3H), 7.62–7.66 (m, 2H).